Sergey V. Kryatov and Elena V. Rybak-Akimova*

Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA

Received 9th June 1999, Accepted 18th August 1999

[Fe₂(μ-O)(tpa)₂(OH)(H₂O)]³⁺ reacts with H₂O₂ in acetonitrile at -40 °C forming a transient diferric peroxo intermediate ($\lambda_{max} = 700$ nm, $\varepsilon = 1800$ dm³ mol⁻¹ cm⁻¹), which then reacts with a second H₂O₂ molecule to give [Fe^{III}Fe^{IV}(μ-O)₂(tpa)₂]³⁺.

Non-heme diiron redox enzymes have been one of the "hot topics" of bioinorganic chemistry for the past decade. Their common mechanistic feature is the formation of a diiron(III) peroxo complex, which then transforms into a high-valent diiron species responsible for the oxidative action of an enzyme. ¹⁻⁴ The actual need for modeling such a process on simple diiron complexes has been recently stated. ^{1,2} The only well characterized structural and functional models for the high-valent diiron species are $Fe^{III}Fe^{IV}(\mu-O)_2$ diamond core complexes with tpa and its derivatives, formed from corresponding Fe^{III}_2 -complexes and H_2O_2 at low temperature. ^{2,5-7} A relatively long-lived peroxo complex has been observed as an intermediate in the formation of $Fe^{III}Fe^{IV}(\mu-O)_2(6-Me_3-tpa)_2^{3+}$ (6-Me_3-tpa = tris(6-methyl-2-pyridylmethyl)amine), ⁸ with the general scheme similar to the peroxide shunt of diiron non-heme enzymes. ¹⁻³ In this paper, we communicate the direct observation of a transient model diferric peroxo complex quickly converting into a high-valent species.

Mixing of $[Fe^{III}_2(\mu-O)(tpa)_2(OH)(H_2O)]^{3+}$ and H_2O_2 solutions in acetonitrile at -40.0 ± 0.1 °C under pseudo-first order conditions (10-fold or larger excess of H_2O_2) produces kinetic traces (Fig. 1), which are well fit by two exponential functions yielding wavelength-independent sequential rate constants k'_{obs} and k''_{obs} .‡ Treatment of the data by IS-2 Rapid Kinetics Software (Hi-Tech) using the A \rightarrow B \rightarrow C model gave electronic spectra of the three species involved (Fig. 1). The initial and final spectra agree well with those reported for $[Fe^{III}_2(\mu-O)(tpa)_2-(OH)(H_2O)]^{3+}$ and $[Fe^{III}Fe^{IV}(\mu-O)_2(tpa)_2]^{3+}$, correspondingly.^{5,7} The spectrum of the intermediate $B_{(peroxo)}$ has a broad maximum at about 700 nm ($\varepsilon = 1800 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$), which is very similar to the H_{peroxo} intermediate of methane monooxygenase ($\lambda_{max} = 700 \, \text{nm}, \ \epsilon = 1800 \, \text{dm}^3 \, \text{mol}^{-1} \, \text{cm}^{-1}$)⁴ and the peroxo intermediate of a mutant ribonucleotide reductase ($\lambda_{\rm max} = 700$ nm, $\varepsilon = 1500$ dm³ mol⁻¹ cm⁻¹). Such a band is characteristic of Fe^{III}₂(μ -peroxo) complexes ^{10,11} and is referred to LMCT. A similar Fe^{III}₂(μ -O)(μ -O₂)(6-Me₃-tpa)₂²⁺ complex has been reported, which converts into [Fe^{III}Fe^{IV}(μ -O)₂(6-Me₃-tpa)₂]³⁺ upon the addition of one equiv. of acid. Thus, the species B_{peroxo} is most probably $[Fe^{III}_{2}(\mu-OH)(\mu-O_{2})(tpa)_{2}]^{3+}$ or $[Fe^{III}_{2}(\mu-OH)(\mu-O_{2})(tpa)_{2}]^{3+}$ or $[Fe^{III}_{2}(\mu-OH)(\mu-O_{2})(tpa)_{2}]^{3+}$ $(\mu - O_2)(tpa)_2(OH)(H_2O)]^{3+}$. It can be also a mixture of these and other diferric peroxo complexes.¹⁰ The rate constant k'_{obs} corresponds to the formation of B_{peroxo} , and k''_{obs} to the transformation of B_{peroxo} into the $Fe^{III}Fe^{IV}$ -species. Concentration dependences for the constants k'_{obs} and k''_{obs} allow us to propose a mechanistic scheme for these two consecutive steps (Scheme 1).

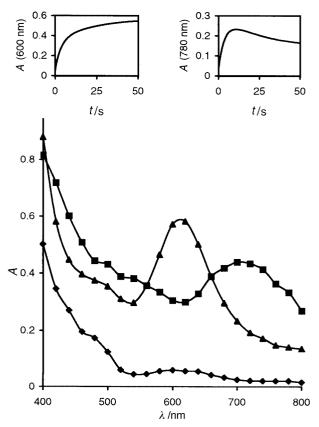


Fig. 1 Spectra of the initial complex $[Fe_2(\mu-O)(tpa)_2(OH)(H_2O)]^{3+}$ (2.5 × 10⁻⁴ mol dm⁻³) (♠), transient species B_{peroxo} (■) and $[Fe^{III}Fe^{IV}-(\mu-O)_2(tpa)_2]^{3+}$ (♠) calculated from kinetic data. $[H_2O_2]_o = 2.5 \times 10^{-3}$ mol dm³ (after mixing).

$$(tpa) Fe^{III} \bigcirc Fe^{III}(tpa) \xrightarrow{3+} \underbrace{k_1}_{k_{-1}} \qquad A_1 + H_2O$$

$$(tpa) Fe^{IV} \bigcirc Fe^{III}(tpa) \xrightarrow{3+} \underbrace{k_3}_{H_2O_2} \qquad B_{peroxo}$$

$$A_1 = (tpa) Fe^{III} \bigcirc Fe^{III}(tpa) \xrightarrow{3+} HO$$

$$B_{peroxo} = (tpa) Fe^{III} \bigcirc Fe^{III}(tpa) \xrightarrow{3+} Ge^{III}(tpa) Ge^{III}(tpa) \xrightarrow{3+} Ge^{III}(tpa) Ge^{III}(tpa)$$

The formation of the transient intermediate B_{peroxo} is decelerated by water and accelerated by hydrogen peroxide. Plots of kinetic data ${k'}_{obs}^{-1}$ vs. [H₂O] at constant [H₂O₂] and ${k'}_{obs}^{-1}$ vs.

J. Chem. Soc., Dalton Trans., 1999, 3335–3336 33

[†] Supplementary data available: plots of kinetic data. For direct electronic access see http://www.rsc.org/suppdata/dt/1999/3335/, otherwise available from BLDSC (No. SUP 57624, 4 pp.) or the RSC Library. See Instructions for Authors, 1999, Issue 1 (http://www.rsc.org/dalton).

 $[H_2O_2]^{-1}$ at constant $[H_2O]$ are straight lines with practically the same intercept. (SUP 57624) Such behavior suggests the formation of another intermediate (A_1) , which exists in equilibrium with the starting complex $[Fe^{III}_2(\mu-O)(tpa)_2(OH)(H_2O)]^{3+}$ and converts irreversibly into B_{peroxo} . Spectral kinetic data (Fig. 1) show that the intermediate A_1 does not accumulate in the reaction mixture to an appreciable amount, and that the reaction [Fe^{III}₂(μ-O)(tpa)₂(OH)(H₂O)]³⁺ \rightarrow A₁ is the rate-limiting step. The simplest model to account for the observations is shown

in Scheme 1.§

$$k'_{\text{obs}} = \frac{k_1(k_2/k_{-1})[\text{H}_2\text{O}_2]}{(k_2/k_{-1})[\text{H}_2\text{O}_2] + [\text{H}_2\text{O}]}$$

The constant $k_1 = 0.5 \pm 0.1 \text{ s}^{-1}$ corresponds to the rate of the H_2O molecule dissociation in $[Fe^{III}_2(\mu-O)(tpa)_2(OH)(H_2O)]^{3+}$ The ratio $k_2/k_{-1} = 6 \pm 2$ reflects the larger nucleophilicity of H₂O₂ compared to H₂O (α-effect).¹³ The dissociative mechanism is common for Fe^{III} olated aqua species due to the labilizing effect of the OH⁻ ligand. ¹⁴ A similar action can be expected from the O²⁻ ligand. Thus, the intermediate A₁ probably is [Fe^{III}₂(μ -O)(tpa)₂(η^1 -OH)]³⁺ or [Fe^{III}₂(μ -O)(μ -OH)(tpa)₂]³⁺. ¹⁵ It can react with H₂O₂ to form [Fe^{III}₂(μ -O)(tpa)₂(OH)(H₂O₂)]³⁺, which then converts into [Fe^{III}₂(μ -O₂)(μ -OH)(tpa)₂]³⁺ or [Fe^{III}₂(μ -O₂)(tpa)₂(OH)(H₂O)]³⁺ by proton transfers. The apparent ε of B_{peroxo} (calculated from kinetic data) does not significantly depend on water concentration up to $[H_2O]/$ [H₂O₂] = 40. It confirms the presence of a practically irreversible stage in the formation of the peroxo intermediate. Peroxide is apparently a much better ligand for Fe^{III} than oxide or hydroxide, as stable Fe^{III}(O₂²⁻)-complexes can form even in aqueous solution.16

The observed pseudo-first order rate constant (k''_{obs}) of the following transformation $B_{peroxo} \rightarrow [Fe^{III}Fe^{IV}(\mu-O)_2(tpa)_2]^{3+}$ does not depend on $[H_2O]$, but is proportional to $[H_2O_2]$.

$$k''_{\text{obs}} = k_3 [H_2 O_2]$$

The graph k''_{obs} vs. $[H_2O_2]$ is a straight line with a practically zero intercept and a slope of $k_3 = 10 \pm 2 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, corresponding to a second-order rate constant for the reaction between B_{peroxo} and H₂O₂ (SUP 57624). The reaction is apparently a redox process with tentative overall stoichiometry:

$$\begin{split} 2[\text{Fe}^{\text{III}}_{2}(\mu\text{-O}_{2})(\mu\text{-OH})(\text{tpa})_{2}]^{3+} &+ \text{H}_{2}\text{O}_{2} \longrightarrow \\ &2[\text{Fe}^{\text{III}}\text{Fe}^{\text{IV}}(\mu\text{-O})_{2}(\text{tpa})_{2}]^{3+} &+ \text{O}_{2} + 2\text{H}_{2}\text{O} \end{split}$$

It should be noted that the presence of a reductant is essential for the action of native ribonucleotide reductase, presumably in order to reduce the Fe^{III}₂-peroxo intermediate to the high-valent Fe^{III}Fe^{IV} intermediate X.³ In the model system

studied here, H_2O_2 is the most probable reductant. The yields of $[Fe^{III}Fe^{IV}(\mu-O)_2(tpa)_2]^{3+}$ have never been quantitative, reaching the maximum of ca. 70% (based on the reported value $\varepsilon = 5500 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})^6$ at 40-fold or more excess of H_2O_2 , which corresponds to $[\text{H}_2\text{O}_2]_o \ge 10 \text{ mM}$ under our conditions. The same maximum yield has been reported by Que's group with only 1.5-fold excess of H_2O_2 , which corresponds also to ca. 10 mM H_2O_2 .⁷ These data can be rationalized by invoking an independent pathway of B_{peroxo} decomposition, which plays a larger role at insufficient absolute (rather than relative) H₂O₂ concentrations.

At room temperature the $[Fe_2(\mu\text{-O})(tpa)_2(OH)(H_2O)]^{3+}$ complex causes intense effervescence of the H₂O₂ acetonitrile solution. Significant catalatic activity has been reported for $[Fe_2(\mu-O)(\mu-O_2CCH_3)(tpa)_2]^{2+}$ in such conditions.¹⁷ To determine, if the excess of H_2O_2 survives at low temperature, additional double-mixing experiments were carried out. The 5 mM H₂O₂ solution was first mixed with 0.5 mM [Fe₂(μ-O)(tpa)₂-(OH)(H₂O)]³⁺ solution and then, upon the completion of apparent spectral changes, with a fresh portion of 0.25 mM $[Fe_2(\mu-O)(tpa)_2(OH)(H_2O)]^{3+}$ solution. Kinetic quantitation showed that no more than 2 moles of H₂O₂ per mole of the Fe₂-complex had been consumed in the first mixing. Thus, the

catalatic process in this system is negligible and suppressed at -40 °C.

In the other series of double-mixing experiments the $[Fe_2-(\mu\text{-O})(tpa)_2(OH)(H_2O)]^{3+}$ solution was first mixed with H_2O_2 solution, and upon the completion of apparent spectral changes, with a fresh portion of more concentrated H₂O₂ solution. It was found that the ratio H_2O_2 : $Fe_2 \ge 1.5 \pm 0.1$ was enough to consume all of the initial diiron complex and prevent the formation of new B_{peroxo} in the second mixing. This confirms the presence of an irreversible stage in the formation of B_{peroxo} and suggests that the starting complex $[Fe_2(\mu\text{-O})-(tpa)_2(OH)(H_2O)]^{3+}$ is not regenerated in the system. The stoichiometry of the initial interaction between $[Fe_2(\mu-O)]$ $(tpa)_2(OH)(\mathring{H_2}O)]^{3+}$ and H_2O_2 to give B_{peroxo} is most probably 1:1, with some H₂O₂ consumed in the concomitant formation of the Fe^{III}Fe^{IV} complex and in a minor catalatic process.

Other kinetic experiments regarding the formation and reactivity of Fe₂O₂(H) diamond cores are currently under way.

Acknowledgements

This work was supported by Tufts University.

Notes and references

 \ddag The initial complex, [Fe₂(μ -O)(tpa)₂(OH)(H₂O)](ClO₄)₃ was prepared by a published procedure. 5 Hydrogen peroxide, 30% aqueous solution (ACS certified grade) and acetonitrile (HPLS grade) were purchased from Fisher. Stopped-flow experiments were carried out by using a Hi-Tech Scientific (Salisbury, UK) SF-43 cryogenic stopped-flow apparatus with stainless steel plumbing. Measurements were made at wavelengths from 360 to 800 nm with 20 nm intervals to get spectral information.

§ More complicated molecular interpretations can also describe the observations. However, another simple model, with the fast preequilibrium $[Fe_2(\mu-O)(tpa)_2(OH)(H_2O)]^{3+} + H_2O_2 \rightleftharpoons A_1 + H_2O$ and the ratelimiting step $A_1 \rightarrow B_{peroxo}$, can be discounted. It implies that A_1 is an Fe^{III}-peroxo complex, which is formed in substantial amount in the reaction mixture (the preequilibrium constant $K_{eq} = 6 \pm 2$). Such an assumption contradicts the spectral changes calculated from kinetic

- 1 A. M. Valentine and S. J. Lippard, J. Chem. Soc., Dalton Trans., 1997, 3925.
- 2 L. Que, Jr., J. Chem. Soc., Dalton Trans., 1997, 3933.
- 3 B. J. Wallar and J. D. Lipscomb, Chem. Rev., 1996, 96, 2625.
- 4 A. M. Valentine, S. S. Stahl and S. J. Lippard, J. Am. Chem. Soc., 1999, 121, 3876.
- 5 Y. Dong, H. Fujii, M. P. Hendrich, R. A. Leising, G. Pan, C. R. Randall, E. C. Wilkinson, Y. Zang, L. Que, Jr., B. G. Fox, K. Kauffmann and E. Münck, J. Am. Chem. Soc., 1995, 117, 2778; H.-F. Hsu, Y. Dong, L. Shu, V. G. Young, Jr. and L. Que, Jr., *J. Am. Chem. Soc.*, 1999, **121**, 5230.
- 6 C. Kim, Y. Dong and L. Que, Jr., J. Am. Chem. Soc., 1997, 119,
- 7 R. A. Leising, B. A. Brennan, L. Que, Jr., B. G. Fox and E. Münck, J. Am. Chem. Soc., 1991, 113, 3988.
- 8 Y. Dong, Y. Zang, L. Shu, E. C. Wilkinson, L. Que, Jr., K. Kauffmann and E. Münck, *J. Am. Chem. Soc.*, 1997, **119**, 12683. 9 J. M. Bollinger, Jr., C. Krebs, A. Vicol, S. Chen, B. A. Ley,
- D. E. Edmondson and B. H. Huynh, J. Am. Chem. Soc., 1998, 120, 1094; P. Moënne-Loccoz, J. Baldwin, B. A. Ley, T. M. Loehr and J. M. Bollinger, Jr., *Biochemistry*, 1998, **37**, 14659. 10 C. Duboc-Toia, S. Ménage, R. Y. N. Ho, L. Que, Jr., C. Lambeaux
- and M. Fontecave, Inorg. Chem., 1999, 38, 1261.
- 11 H. Sugimoto, T. Nagayama, S. Maruyama, S. Fujinami, Y. Yasuda, M. Suzuki and A. Uehara, *Bull. Chem. Soc. Jpn.*, 1998, **71**, 2267.
- 12 T. C. Brunold, N. Tamura, N. Kitajima, Y. Moro-oka and E. I. Solomon, J. Am. Chem. Soc., 1998, 120, 5674.
- 13 S. Hoz and E. Bunzel, Isr. J. Chem., 1985, 26, 313.
- 14 J. O. Edwards, F. Monacelli and G. Ortaggi, Inorg. Chim. Acta, 1974,
- 11, 47; A. E. Merbach, *Pure Appl. Chem.* 1987, **59**, 161. 15 H. Zheng, Y. Zang, Y. Dong, V. G. Young, Jr. and L. Que, Jr., *J. Am. Chem. Soc.*, 1999, **121**, 2226.
- 16 F. Neese and E. I. Solomon, J. Am. Chem. Soc., 1998, 120, 12829.
- 17 T. Okuno, S. Ito, S. Ohba and Y. Nishida, J. Chem. Soc., Dalton Trans., 1997, 3547.

Communication 9/04626G